
BILKENT UNIVERSITY

Department of Computer Engineering

SENIOR DESIGN PROJECT
Parkhound: Parking Spot Detection and Navigation System

Low Level Design Report

Group Members
Arda Türkoğlu
Ege Turan
Berkin Inan
Görkem Yılmaz
Ata Coşkun

Supervisor
Varol Akman

Jury Members
Uğur Doğrusöz
Ercüment Çiçek

Contents
1 Introduction 2

1.1 Object Design Trade-offs . 2
1.1.1 Functionality vs. Security . 2

1.2 Compatibility vs Extensibility . 2
1.3 Space vs Time . 3
1.4 Robustness vs Cost . 3
1.5 Interface Documentation Guidelines . 3
1.6 Engineering Standards . 3
1.7 Definitions, Acronyms, and Abbreviations . 3

2 Packages 4
2.1 Packages’ Diagram . 4
2.2 Client . 4

2.2.1 Screens . 5
2.2.2 Components . 5
2.2.3 Navigation . 6
2.2.4 Global State . 6

2.3 Controller . 6
2.4 Database . 7
2.5 Logic . 7

3 Class Interfaces 8
3.1 Client . 8

3.1.1 View . 8
3.2 Controller . 14
3.3 Database . 15
3.4 Logic . 17

4 References 21

1

1 Introduction
With the constant increase in population and owned cars in cities, finding a parking spot becomes a
more prominent problem. Drivers spend hours around a parking lot to find an available spot to find
their cars [4]. A 35% travel during rush hours looking for free parking spots that are hard to find.
This makes parking very important to regulate vehicle flow and reduce atmospheric pollution [5].

This search causes drivers to waste time and gas. Therefore, parking systems are very important
for regulating the traffic flow and sustaining transportation of the city. Because of the increasing
number of personal vehicles, many foundations cannot provide enough parking slots or their parking
areas face several parking problems. Since foundation can have many different and large-scale
parking areas.

In addition to parking availability, there are two other aspects of outdoor vehicle parks. One of
them is the security of the parking area which includes car security and protecting the area of the
property. It is not always easy to control a large area separated for cars and this uncontrolled area
can be a place for illegal activities. Secondly, some outdoor vehicle parks demand some regulations
about parking, such as placing the car between the white lines. Normally, this kind of problem
is handled by the security personnel in the foundation. They are walking around and making
controls but again, this is not easy and has a high percentage of error-prone in the large outdoor
vehicle parks.For almost a decade, many foundations have used sensor-based control parking slot
maintenance systems in closed car parking spaces.

However, the management of the outdoor car parking spaces is not easy for sensory systems due
to the safety of the devices and the placement difficulties faced by the producers. Also, these sensory
systems cannot handle many security issues and regulations about parking. Therefore, we came up
with an idea of creating a computer vision system named ParkHound to maintain the parking spots
in outdoor vehicle cars. Our system is based on the image processing unit and machine learning
system that uses predetermined data set for understanding the status of the parking slot in the
open air and maintaining the specified regulations and the security concerns. Our system will be
implemented on the camera system and can be used for the large-scale open vehicle parks.

1.1 Object Design Trade-offs
1.1.1 Functionality vs. Security

In the initial plans, we intended to show the live camera footage to the users for them to better
understand the location of the parking spaces. However, this would create issues about security
because live recordings of these cameras may not be allowed to be public. We decided to remove
showing the live recording to users. However, in practice our system will be used as a guide to the
parking area security. In general, security office is responsible from the parking area and they have
credential to use camera record. In commercial level, our system will become automatic and it’s
data only be controlled by the security.

1.2 Compatibility vs Extensibility
ParkHound is designed as cross-platform software. It has mobile and web support. This bring a
lot of development work. But we are using React JS for our web and cross-platform. Using same
language and development tool for mobile and web user-interface will provide flexibility for our
system. Updates and the change for new features will be reflected easily. In addition, our system
design based on packages and those packages are divided into controllers and working modules.
This modular design enable us to extend our system easily. With that design approach, we handle

2

compatibility target by serving desired product and providing good architecture for extensibility of
our system.

1.3 Space vs Time
Our server will make predictions on the video frames. Thus, we need to have some video data in
the server. We can minimize this data size by increasing the run-time of our model. Thus running
pour model on the CPU is not a good idea for our run-time. Because we want to give real-time
update to the parking area. To handle this we run our model on GPU. Using CUDA cores for matrix
operations in deep learning provide better run-time. Also, adapting our system for several GPUs
will also increase our run-time. By using parallel computing principles we will both decrease data
amount in the server and the run-time of our system.

1.4 Robustness vs Cost
Main working principle of the ParkHound depends on the deep learning model for car detection. As
parking areas get larger processing time needed for predictions will increase. Instead of deploying
our model to small server, we need to deploy our model to cloud environment with high processing
feature. This increases the cost for our system. To ensure robustness we will test performance of
our system on different deployment environments. That way we will provide robust and affordable
service for our customers.

1.5 Interface Documentation Guidelines
Class Name of the class
Description Description of the class.
Attributes
Name of an attribute Description of attribute
Methods
Signature of method Description of method

1.6 Engineering Standards
Throughout this report, as well as in our previous ones, we have used the Unified Modeling Language
Standard (UML) [2] for the diagrams depicting the details of the system. Also, IEEE (Institute of
Electrical and Electronics Engineers) [1] citation style has been used in our references.

1.7 Definitions, Acronyms, and Abbreviations
• Parking Lot: Collection of designated areas for vehicles to park. A parking lot can be

composed of Parking Zones.

• Parking Zone: Areas inside the parking lot that divides the lot into manageable sections. A
parking zone contains many parking spaces.

• Parking Space: A single spot where a vehicle can be parked on.

• CUDA: CUDA is a parallel computing platform and programming model developed by NVIDIA
for general computing on graphical processing units (GPUs). With CUDA, developers are able
to dramatically speed up computing applications by harnessing the power of GPUs[3].

3

2 Packages

2.1 Packages’ Diagram

Figure 1: Full Diagram of the System of Parkhound

2.2 Client
The client consists of 4 main structures. These structures are screens, components, navigation and
global state. While screens are mostly self-contained, other structures are shared throughout the
application. Screens are connected to the global state and responsible for rendering components on
a page. Components are the small parts that are either stateful or stateless to construct a screen.
Navigation handles the transition between the pages and global state is the data that is shared by
the all structures, such as user account information.

4

2.2.1 Screens

• HomeMapScreen: This screen will be the default screen when the user launches application.
This screen will show a map centered around the current location of the user and display the
nearby parking lots. Number of available spaces will be shown on the icons of the parking
lots. If there are no available space in a lot, the lot icon will be colored differently. This screen
contains the LotInfoBar component for a quick access to information about a selected lot.

• ZoneMapScreen: This screen will display the parking zones inside a lot. Zones are groups
of parking spaces to manage the spaces more easily. The parking zones will be shown in a
top-down manner, similar to a map of the parking lot. Zones with available space will shown
with a different color than the zones at full capacity. The parking lot’s name will displayed at
the top and can be pressed to view detailed information about the lot’s capabilities. The user
can add the lot the favorites list and can also navigate back to the HomeMapScreen.

• ParkingSpaceMapScreen: This screen displays the available parking spaces inside a zone.
Spaces are spots inside a zone that a car can be placed. Available spaces are shown with a
different color than the spaces that are full. Entry and exit are displayed on the map for the
user the orient themselves. A selected space is highlighted and the user can navigate to that
spot by giving them directions.

• LotListScreen: This screen lists the nearby parking lots as cards. On the cards, name of the
parking lot, distance from the user’s current location and the number of available spaces are
displayed. If the user has marked any parking lot as a favorite, they are displayed at the top
of the list, separated from the other parking lots. The user can search and filter the parking
lots on this screen.

• SettingsScreen: This screen lists the options that user can modify. These options are pro-
file information, theme, notification settings and language. User can also change the search
distance radius for searching parking lots.

• ForgotPasswordScreen: The user can request a password reset link to be sent to their
registered email address from this screen. The user can also return to the sign-in screen.

• ResetPasswordScreen: After clicking the password reset link, the user is directed to this
screen. They can enter a new password to change the password of their account.

• LoginScreen: On this screen, the user can enter their email and password to login to their
account. From this screen, the user can navigate to forgot password or sign-up screen.

• SignupScreen: On this screen, the user can create an account by entering their name, email
and password. From this screen, the user can navigate to login screen.

2.2.2 Components

• HomeMap: This is the map component on the home screen. This component will show the
parking lots and the user’s current location on the map.

• LotInfoBar: This component will show information about a selected lot such as number of
available spots, address, distance and time to reach the destination. It is rendered inside the
HomeMapScreen.

5

• LotInfoSummary: Given the lot’s id, this component will contain the information about the
lot as a summary.

• ParkingSpace: This component shows the state of a single space in a zone. Possible states
are full or available. It can also show special icons such as disabled parking, to show which
spaces are suitable for disabled parking.

• LotSearchCard: This component shows the general information about a lot. It is used to
list the lots when searching and filtering.

• LotImage: This component renders the image of the lot. It is used in LotSearchCard.

• DrawerMenu: A sidebar menu to access the main screens of the app quickly. These screens
include HomeMap, Parking Lots and Settings.

• SettingsSearchDistanceSlider: A slider component for user to adjust the search range of
the parking lots nearby.

2.2.3 Navigation

Navigation is a controller that handles the transition between the two pages. When transitioning
from one screen to another, the previous screen is unmounted and freed from the memory, while
the new one is mounted. Navigation controller handles which screen matches the current path and
mounts that screen. It also enables sharing data between two screen, without the use of the Global
State.

2.2.4 Global State

Global State is a state accessible by all the components. It is required because of the tree hierarchy
in React. If data needs to be accessed from a component several levels deep inside the application,
either the data needs to passed down from all the parent components or a shared state is required.
Former method creates a codebase that is difficult to read and maintain. Global State contains data
such as user authentication token, user info and preferences.

2.3 Controller
The Controller Unit provides communication between views, database and logic unit. Depending
on the user’s requests, it reads and writes to the database, reads from the logic unit and responds
to requests from the view unit.

• Main Controller: This controller organizes the account and space data which come from the
database and logic unit.

• Account Controller: This controller collects appropriate account information from the
database and writes new updates to the database.

• Space Controller: This controller collects appropriate space information from the database
or logic unit through the image controller(depends on user’s request) and writes new updates
to the database.

6

• Image Controller: This controller is in the bridge role database and logic unit. Some requests
require data retrieval directly from the logic unit and for this situation the image controller
sends the output image of the logic to the space controller. Some requests require data retrieval
from the database and the image controller reads data from the database and sends it to the
main controller through the space controller.

2.4 Database
The Database Unit provides the databases and all data of the system such as account information
and processed images from the logic unit. Depending on the other packages requests, it stores and
writes data to databases. Also, sends requested data to the controller unit.

• User: This class is the parent class that is responsible for general user tasks such as storing
user information.

• Admin: This class has the admin role. Admins are able to manage user accounts and edit
their information.

• Company: This class represents the park owners in the system.

• Customer: This class represents the accounts that use the system to search and collect data
from parking areas.

• Database Builder: This class is responsible for initiating the database and its appropriate
conditions.

• Image Info: This class is responsible for organizing raw results of the image processing.

• Space Info: This class is responsible for organizing image information to determine space
information of the parks.

2.5 Logic
The Logic Unit manages the model and parking area classification. It uses model with its dataset and
processes the video stream. It converts the video stream into frames and uses predict method with
the model to get information of the parking area. Logic can use live stream and given video stream to
make its prediction. After that it creates the VehicleParkInfo object to update park information. In
addition, it creates abstract representation of the parking area with using predefined model. Thus,
system can both update and create parking information using the Logic package.

• Train: This class trains a deep learning model to be used later in the prediction. Parked car
images are the training data and a video will be used to test the model’s accuracy and loss.

• Predict: This class makes the prediction to determine how many places in a car park are
empty or occupied. It uses an input video stream in order make prediction on that data.

• Video Stream: This class loads the video and processes it to get a frame by frame input for
prediction. It also saves specific video intervals and defines the video’s settings.

• Draw Abstraction: This class gets the car park information from the Main Controller and
draws a visual sketch of the parking lot in application for users to see. It gets the car and park
information from the input data object and re-scales the sketch accordingly.

7

• Vehicle Park Info: This class represents the information of the parking area. After model
predictions created with the video stream, Vehicle park info is updated to represents the current
situation of the parking area. This information used too update the database.

• Live Stream: This class will be used in live stream video inputs for our live prediction. An
OpenCV module will be used to process input (live stream) and determine the empty and
occupied parking spaces moment to moment.

• Main Controller: This class can be considered as the controller of other classes. It fills the
car information matrix that is used in some other classes and sends the matrix to those classes.
It controls the training, prediction and live video processing procedures.

3 Class Interfaces

3.1 Client
3.1.1 View

Class Navigator
Description This class handles the rendering of the active

screen
Attributes
routes Array of the routes that can be rendered in

the application
Methods
useParams() Exposed from this class, handles transferring

parameters between two screens
useLocation() Exposed from this class, handles

programmatic navigation between screens

Class HomeMapScreen
Description This class is the initial screen the user sees. It

contains the map.
Attributes
currentLocation Current location of the user, contains the

latitude and longitude of the location
nearbyLots Data of the parking lots near the user’s

current location
Methods
fetchLotInfoBarData() Requests the data of the selected parking lot

to be shown in the LotInfoBar
handleMenuButtonClick() Method to perform when the Menu button is

pressed. Shows the drawer menu.
handleSearchButtonClick() Method to perform when the Search button is

pressed. Directs the user to the LotListScreen
fetchNearbyLots() Requests the data of the nearby parking lots

to be shown in the map.
getNearbyLots() Accessor of the nearbyLots attribute
setNearbyLots() Mutator of the nearbyLots attribute

8

Class ZoneMapScreen
Description This class is the screen that shows the zones

in a parking lot.
Attributes
lot Data of the parking lot currently being

displayed
Methods
handleFavoriteClick() Method to perform when the Favorite icon is

pressed. Adds the lot to the favorites.
handleZoneClick() Method to perform when a zone on the map is

pressed.

Class ParkingSpaceMapScreen
Description This class is the screen that shows the parking

spaces in a zone.
Attributes
zone Data of the zone currently being displayed.

Received as prop from the ZoneMapScreen.
selectedSpace Data of the parking space currently selected.

Shows the space the user intends to park.
Methods
getSelectedSpace() Accessor of the selected parking space data
setSelectedSpace() Mutator of the selected parking space data

9

Class LotListScreen
Description This class is the screen that shows the list of

parking lots
Attributes
parkingLots List of the parking lot to be displayed on the

screen
searchQuery User’s query for searching for a parking lot
selectedFilters Filters selected by the user to filter the list
favorites Parking lots marked as favorite by the user
Methods
getSearchQuery() Accessor of the search query in the search

input
setSearchQuery() Mutator of the search query in the search

input, called when input value changes
getSelectedFilters() Accessor of the filters to be used in the

filtering the list
setSelectedFilters() Mutator of the filters, called when user

changes the filters
handleCardClick() Method to be called when a parking lot card

is pressed
getFavorites() Accessor of the favorites to be shown in the

list separately
setFavorites() Mutator of the favorites, called when the

favorites are fetched from the server

Class SettingsScreen
Description This class is the screen that shows menu of

the user preferences
Attributes
userPreferences User’s preference data of the account and the

application
Methods
handleMenuItemClick() Method called when a menu item is pressed

Class ForgotPasswordScreen
Description This class is the screen that user can request a

password reset
Attributes
userPreferences User’s preference data of the account and the

application
Methods
handleMenuItemClick() Method called when a menu item is pressed

10

Class ForgotPasswordScreen
Description This class is the screen that user can reset

their password. This screen is accessed by a
link sent to the user’s email

Attributes
newPassword New password entered by the user
confirmPassword Retyping of the new password entered by the

user
Methods
getNewPassword() Accessor of the new password from the new

password input field
setNewPassword() Mutator of the new password. Called when

the new password input field is changed
getConfirmPassword() Accessor of the retyping of the new password

from the confirm password input field
setConfirmPassword() Mutator of the retyping of the new password.

Called when the confirm password input field
is changed

handleResetPassword() Method called when the Reset Password
button is pressed. Sends a request to the
server to replace the user’s password with a
new one entered by the user.

Class LoginScreen
Description This class handles the user login
Attributes
email Email address entered by the user
password Password entered by the user
Methods
setEmail() Mutator of the email input value
setPassword() Mutator of the password input value
handleSignInClick() Initiates the login process with the current

email and password values

11

Class SignupScreen
Description This class handles account creation
Attributes
name Name entered by the user
email Email address entered by the user
password Password entered by the user
Methods
getName() Accessor of the name input value, from the

name input field
getEmail() Accessor of the email input value, from the

email input field
getPassword() Accessor of the password input value, from the

password input field
setName() Mutator of the name input value
setEmail() Mutator of the email input value
setPassword() Mutator of the password input value
handleSignUpClick() Initiates the account creation process with the

current name, email and password values

Class HomeMap
Description This component displays the map and markers

on it
Attributes
markers Locations of the elements that will be

displayed on the map. It is received from the
HomeMapScreen

Class LotInfoBar
Description This component displays information about

the selected lot
Attributes
selectedLot Data of the parking lot which is currently

selected
Methods
getSelectedLot() Accessor of the selected lot data
setSelectedLot() Mutator of the selected lot, called by parent of

the component

Class LotInfoSummary
Description This component displays summary

information about the lot it received
Attributes
lotId Unique ID of the parking lot

12

Class ParkingSpace
Description This component shows the state of a single

space in a zone.
Attributes
space Data of the parking space, such as which

parking lot and zone it belongs in
isAvailable Boolean showing if the space is available or not
isDisabledParking Boolean showing if the space is reserved for

disabled parking or not
isSelected Boolean showing if the space is selected by the

user or not
Methods
getIsSelected() Accessor of the selected state of the space
setIsSelected() Mutator of the selected state of the space
handleClick() Method called when the space is pressed on

Class LotSearchCard
Description This component shows the general information

about a lot on a card for the listings
Attributes
parkingLot Data of the parking lot

Class DrawerMenu
Description This component shows a menu for quick

access to other screens
Attributes
screenLinks Links to the other screens
Methods
handleMenuItemClick() Method called when a menu item is pressed on

Class SettingsSearchDistanceSlider
Description This is a component for adjusting the search

range between a limited range
Attributes
distance Radius of the search circle in kilometers
Methods
handleOnDrag() Method called when the slider is changed by

dragging
setDistance() Mutator of the distance value

13

3.2 Controller
Class Main Controller
Attributes
accountController Account information which are send to

appropriate views.
spaceController Space informations which are send to

appropriate views
Methods
sendInfoToView() The method that send space and account

information to the appropriate views.
updateInfo() Mutator method for account and space

information.

Class Account Controller
Attributes
accountList Array of current accounts in the system.
accountInfo Account information of the active user.
accountVehicleInfo Vehicle information of the active user.
Methods
updateVehicleInfo() Mutator method for accountVehicleInfo.
updateAccountInfo() Mutator method for accountInfo.
getAccountInfo() Accessor method for account information.

Class Space Controller
Attributes
space Space object.
spaceList List of spaces.
spaceInfo Information about the spaces.
spaceStatus Status of the spaces.
emptySpaceList List of empty spaces.
Methods
sendSpaceInfo() The method that sends space informations to

appropriate views.
getSpaceInfo() Accessor method for spaces.
getEmptySpaces() Accessor method for emtpySpaceList.

14

Class Image Controller
Attributes
outputImage Space object.
imageList List of images.
imageTime The time of the image information.
imageInfo Image data that is send to database to record

it.
Methods
addImage() Add captured image to the system.
sendImage() The method that sends the image to the

database.
removeImage() The method that removes the image from the

database.

3.3 Database
Class User
Attributes
username Name of the user’s account.
password Password of the user’s account.
email Email of the user’s account.
phone Phone number of user’s account.
Methods
getUserName() Accessor method for username.
getPassword() Accessor method for password.
getAccountType() Accessor method for account type.
getUserInfo() Accessor method for user information.
getPhone() Accessor method for phone.
getEmail() Accessor method for email.
setUserName() Mutator method for username.
setPassword() Mutator method for password.
setEmail() Mutator method for email.
setPhone() Mutator method for phone.
setUserInfo() Mutator method for user information.

Class Admin
Attributes
userList Array of users in the system.
Methods
getUserList() Accessor method for userList.
updateUserList() Mutator method for userList.
updateUser() Mutator method for specific user whose

information updated by admin.

15

Class Company
Attributes
companyInfo Space object.
customerList List of customers who are members of the

company.
vehicleList List of vehicles who are members of the

company.
Methods
setCustomerList() The method that sends space informations to

appropriate views.
setVehicleList() Accessor method for spaces.
getCustomerList() Accessor method for emtpySpaceList.
getVehicleList() Accessor method for emtpySpaceList.

Class Customer
Attributes
vehicleInfo Information about the customer’s vehicle.
Methods
getVehicleInfo() Accessor method for vehicleInfo.
setVehicleInfo() Mutator method for vehicleInfo.

Class Database Builder
Attributes
databases Array of current databases in the system.
Methods
databaseBuilder() Initiator method for database.
databaseConnector() The method that start or terminate the

connection with database.
addDatabase() Add new database to the system.

Class Image Info
Attributes
ImageInfo Image configuration(matrix) which are taken

from logic module.
ImageDate The time informatiıon of the image

configuration.
Methods
getImageInfo() Accessor method for imageInfo.
getImageDate() Accessor method for imageDate.
isProcessed() The method that checks whether the image

process is done in logic unit.

16

Class Space Info
Attributes
status Status of the space.
locationInfo Location of the space such as lot, zone etc.
spaceDate The time information about that space info.
occupiedBy Account information of someone who occupies

the space.
Methods
isEmpty() The method that checks whether the space is

empty or not.
getSpaceAccountInfo() Accessor method for space account

information.
getSpaceLocation() Accessor method for space location.

3.4 Logic
Class Predict
Attributes
image Input image will be used in prediction.
dimensions Dimensions of the model prediction constraint
loadedModel Pre-trained TensorFlow or Keras model.
carInformation Acquired information about car from the

prediction.
Methods
getParkInformation() Information about the empty and occupied

spaces that is acquired from the prediction.
createProcessingImage() Prepare image for model processing.
predictVehiceModel() Use model to predict information about some

of the features of parked cars such color and
shape.

getLoadedModel() Get the pre-trained model for prediction.
detect() Make predictions about car park information.

17

Class Train
Attributes
dataset Dataset that used to train the model.
model A model that is created with certain

hyperparameters that will be trained with the
dataset

hyperParameters Parameters whose values will used to control
the learning process.

Methods
getValidLoss() Accessor method to get validation loss of the

training.
getValidAccuracy() Accessor method to get validation accuracy of

the training.
getTrainAccuracy() Accessor method to get training accuracy of

the training.
trainModel() Use dataset to train the model.
controlGPUcount() Control GPU count for the training.
getTrainLoss() Accessor method to get the training loss.
getOptimalParams() This function determines the optimal

parameters for the training procedure.
saveModel() This function saves the model on disk to load

and use in prediction.
loadedModel() A method to load a pre-trained model.

Class VideoStream
Attributes
inputStream Input video that will be used in prediction.
outputStream Output video streaming that will be processed

& shows labels
video Resulting video.
Methods
getFrames() It processes the video to divide it into frames.
processVideo() It processes the frames by making prediction

on it.
defineVideoSettings() It defines the settings for video such as light

and contrast to get a better prediction results.
saveVideoInterval() It saves specified video interval on the disk
checkVideoSource() Check if the video is valid.

18

Class LiveStream
Attributes
model Deep Learning model that will used in live

prediction.
Methods
openCV2() A module that will be used in live video

prediction.
loadModel() It loads the pre-trained model to make

prediction.

Class Draw Abstraction
Attributes
carInformation A matrix that contains the data acquired

about the cars.
abstractionData A matrix that contains locations (coordinates)

of detected cars.
parkInformation Contains information about the empty and

occupied car spaces.
Methods
drawAbstractMap() It draws a visual sketch of the parking lot by

using the abstractionData matrix.
reScaleMap() It rescales the map according to the screen

sizes.
getCarInfo() Accessor function for getting the car

information.
getParkInfo() Accessor function for getting the park

information.

Class VehicleParkInfo
Attributes
carCoordinates It gives car location in the parking area.
carModel Car model that acquired by prediction.
carColor Car color that acquired by prediction.
isFilled Boolean value to control occupation of parking

area.
carID This is unique id given for each car.
Methods
createVehicleMatrix() Create new vehicle information matrix for the

parking area.
isPlaceFilled() Control that is selected location is occupied.
occupyPlace() In case of occupied fill the location.

19

Class MainController
Attributes
carInformation Acquired information about car from the

prediction.
date Date of the predictions.
Methods
fillCarInformationMatrix() It updates car information taken with using

makePredictions.
updateParkInformation() Updates the vehicle park info matrix.
sendCarInformation() Send acquired car information.
createAbstractions() Create park abstraction.
trainModel() Train model using the dataset.
makePrediction() Make predictions with using the trained

model.
streamVideo() Stream the video for the predictions.

20

4 References
[1] Ieee reference guide. https://ieeeauthorcenter.ieee.org/wp-content/uploads/

IEEE-Reference-Guide.pdf. Accessed on 4-10-2020.

[2] Unified modeling language. https://en.wikipedia.org/wiki/UnifiedModelingLanguage,
May 2011. Accessed on 4-10-2020.

[3] Cuda zone. https://developer.nvidia.com/cuda-zone, Sep 2020. Accessed on 5-10-2020.

[4] BritishParkingAssociation. Motorists spend nearly four days a year-
looking for a parking space. www.britishparking.co.uk/News/
motorists-spend-nearly-four-days-a-year-looking-for-aparking-space, Oct 2015.
Accessed on 4-10-2020.

[5] CIRCONTROL. The parking of the future: problems, challenges and solutions. https:
//circontrol.com/the-parking-of-the-future-problems-challenges-and-solutions/,
May 2020. Accessed on 4-10-2020.

21

